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A semi-active dynamic vibration absorber with an array of viscoelastic elements is
studied. The viscoelastic elements are modelled as materials with memory in which the
internal dissipative forces depend on current, as well as previous deformations. The
viscoelastic behavior is governed by two parameters: the relaxation modulus G0, and the
relaxation time g. The principle of time–temperature superposition is used to affect a
dependence of the relaxation time g on temperature. It is shown that this temperature
dependence can be utilized to design a dynamic vibration absorber whose suppression band
can be shifted towards larger or smaller frequencies, thereby creating an effective
suppression band considerably wider than that of a conventional dynamic vibration
absorber.
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1. INTRODUCTION

Dynamic vibration absorbers are important means of providing vibration suppression in
many mechanical systems especially near resonance. Examples of such systems include
machines, heavy duty vehicles, generators, and building structures. For a detailed account
of such applications and further references, the reader is referred to reference [1].

An important attribute of a dynamic absorber is its suppression band—the frequency
range where the transfer function between the driving force and the oscillations of the main
system has magnitude smaller than unity. The problem of the suppression band was first
considered by Roberson [2] who studied a dynamic vibration absorber with a linear and
a cubic spring in parallel, and showed that such a non-linear dynamic vibration absorber
had a wider suppression band than the linear vibration absorber. At about the same time,
a non-linear dynamic vibration absorber with a hardening spring of hyperbolic sine
characteristic was studied in reference [3], and again it was shown that this dynamic
vibration absorber has a wider suppression band than the linear dynamic vibration
absorber. However, partly due to the rather impractical nature of these set-ups, several
studies have since then been devoted to obtaining alternative dynamic vibration absorbers
with broad suppression bands.

A broadband non-linear dynamic vibration absorber with a softening spring of Belleville
type is considered in reference [4]. It is shown that in this case a suppression band that
is roughly 10% of the tuning frequency can be obtained. However, the suppression band
is not located about the resonance frequency of the main system. In fact, at the resonance
frequency, the amplitude of the main system is larger than it would be with an undamped
linear vibration absorber.
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In reference [5], another non-linear dynamic vibration absorber—an impact vibration
absorber—is studied. This consists of a small rigid mass in a container that is firmly
attached to the main mass. The mass may collide with the walls of its container during
the motion of the system, which accounts for the non-linearity. This non-linear dynamic
vibration absorber has the advantage of not exhibiting the amplitude peaks that are
generated by a linear vibration absorber on both sides of the resonance frequency.
However, it has a smaller suppression band than that of a linear dynamic vibration
absorber.

A general point of concern with non-linear dynamic vibration absorbers is that they may
lead to instabilities with unwanted consequences. This has been pointed out in reference
[6] where non-linear dynamic vibration absorbers with both hardening and softening cubic
characteristics are studied.

More recently, dynamic vibration absorbers with viscoelastic materials were studied in
reference [7], and the temperature dependence of such absorbers was investigated. The
suppression band of the viscoelastic dynamic vibration absorber is comparable to that of
a conventional dynamic vibration absorber, and therefore leads to the same concerns that
are associated with the latter.

The aim of the present paper is to make use of the temperature dependent mechanical
behavior of viscoelastic materials to design a dynamic vibration absorber with an
adaptable suppression band. The material-with-memory model is used to describe the
viscoelastic behavior and its temperature dependence. The adaptability of the suppression
band allows for the dynamic vibration absorber to keep providing vibration suppression
as, for example, the driving frequency, or the natural frequency of the main system,
fluctuates. It is shown that, in this way, a significantly wider suppression band can be
obtained than from an optimized damped linear vibration absorber. This suppression band
is generally centered at the resonance frequency which is an advantage over e.g., the
non-linear vibration absorber in reference [4]. This is therefore a study that contributes
to the feasibility and advantage of the viscoelastic dynamic vibration absorber.

2. CONSTITUTIVE ASSUMPTIONS AND DYNAMICAL EQUATIONS

Consider the assembly shown in Figure 1 that consists of an oscillator of mass M,
attached to a spring and dashpot, and a dynamic vibration absorber consisting of a mass
m attached to the main system through an array of viscoelastic bars. The stiffness of the
spring is denoted by k, and the damping constant of the dashpot is b. The viscoelastic bars
are all assumed to have the same referential length L0. Let xi = xi (X, t) denote the position
of a particle X of the viscoelastic bar i at time t, where both xi and X are measured relative
to the fixed vertical wall in Figure 1. If one lets l0 denote the undistorted length of the
spring, it follows that for all i, x1(t)0 xi (l0, t)− l0 measures the elongation of the spring,
and x2(t)0 xi ((l0 +L0), t)− l0 −L0 measures the elongation of the viscoelastic bars. The
deformation gradient history in bar i is given by

Fi (X, t− s)0
1xi (X, t− s)

1X
, [sq 0.

The relative strain history for bar i is then characterized by

[Jt ]i (X, t− s)=
[Fi (X, t− s)]2

[Fi (X, t)]2
−1, [se 0. (1)
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Assuming that the constitutive response function for determining the present value of the
axial force fi (X, t) on the particle X in the viscoelastic bar i is of the finite-linear form,
(see reference [8]), one has

fi (X, t)= f�e(Fi (X, t))+g
a

0

dGi (s)
ds

[Jt ]i (X, t− s) ds, (2)

where f� e( · ) denots an elastic response function, here assumed to be the same for all the
viscoelastic bars, and Gi ( · ) is the viscoelastic relaxation function for bar i.

The Piola–Kirchoff stress in bar i is given by fi (X, t)/A0, where A0 is the referential
cross-sectional area of the bar (assumed constant), and the balance of linear momentum
requires

1
A0

1fi (X, t)
1X

= r0ẍi (X, t), (3)

where r0 is the constant reference mass density, assumed to be the same for all bars. In
this work, the inertia of the viscoelastic bars will be neglected. Then, fi (X, t) is independent
of X from equation (3) and, as an approximation, the deformation of the bars may be
assumed to be homogeneous, so that one may write

xi = xi (X, t)= l0 + x1(t)+ (X− l0)ji (t), (4)

where ji (t0)=1 if bar i is unstretched at t= t0. Clearly,

l0 +L0 + x2(t)= x(l0 +L0, t)= l0 + x1(t)+L0ji (t), (5)

and it follows that

ji (t)=1+
x2(t)− x1(t)

L0
0 j(t) (6)

Figure 1. A dynamic vibration absorber with an array of viscoelastic bars.
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is the same for all bars. Then, for all i, the deformation gradient Fi (X, t)= 1xi (X, t)/
1X= j(t) is the homogeneous stretch of material filaments so that

f� e(Fi (X, t))= f e(j(t)), (7)

and

[Jt ]i (X, t− s)=
j2(t− s)− j2(t)

j2(t)
. (8)

Now, from equations (2), (7) and (8) it follows that fi (X, t)= fi (t), where

fi (t)= f e(j(t))+g
a

0

dGi (s)
ds

j2(t− s)− j2(t)
j2(t)

ds. (9)

The dynamical equations for the masses M and m then take the form

Mẍ1(t)=−kx1(t)− mẋ1(t)+ s
n

i=1

fi (t)+P sin Vt, (10)

mẍ2 =− s
n

i=1

fi (t). (11)

3. TIME–TEMPERATURE SUPERPOSITION: REDUCED DYNAMICAL EQUATIONS

Suppose that the relaxation function for a viscoelastic bar corresponding to a reference
temperature Ts is given by

G(s)=G0 e−s/g0, (12)

for se 0, where G0 q 0 is the relaxation modulus, and g0 q 0 is the relaxation time at this
temperature†. Thus, both G0 and g0 are assumed to be the same for all the viscoelastic bars.
Then, according to a common application of the time–temprature superposition principle,
(see reference [9]), the relaxation function G(s, T) at temperature T is given by

G(s, T)=G 0s g0

g(T)1=G0 e−s/g(T), (13)

where g(Ts )= g0 and g(T)q 0 decreases rapidly with increasing temperature, especially for
a polymer near its glass transition temperature. This hypothesis reflects the experimental
fact that the relaxation modulus itself does not notably depend on temperature, and that
the temperature dependence of the relaxation function is adequately characterized by a
temperature dependent relaxation time g(T).

For polymers, a widely used expression for g(T) is given by the Williams–Landal–Ferry
formula (see e.g., references [10, 11]),

g(T)= g0 ec(T), c(T)=
c1(T−Ts )
c2 +T−Ts

, (14)

†This is a simplifying assumption for the behavior of the viscoelastic material. A more general model would be
that involving a spectrum of relaxation times.
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Figure 2. The normalized relaxation function for rubber: g(T)/g0 = ec(T) versus temperature, (T−Ts ).

where the material constants c1 and c2 are positive and dependent on the reference
temperature Ts . For rubbers, for example, this expression is fairly well approximated by
the form

c(T)=
−8·86(T−Ts )
101·6+T−Ts

, (15)

where Ts is a material dependent reference temperature that normally lies about 50°K
above the glass transition temperature, and thus lies roughly in the range of 200°K–300°K.
The large effect of temperature on the temperature dependent relaxation time g(T) of
equation (14), (where c(T) is given by equation (15)), is shown in Figure 2. Clearly, in
order to double that value of g(T) with respect to its value g0 at T=Ts a decrease of
approximately 7°K is all that is necessary; to cut by one-half the value of g(T) would take
only an increase of 10°K.

Denoting the temperature in bar i by Ti the relaxation function in bar i is

Gi (s)=G(s, Ti )=G0 e−s/g(Ti ). (16)

Then, using equation (16) in equation (9), it follows that the force throughout the
viscoelastic bar i is

fi (t)= f e(j(t))−
G0

g(Ti ) g
a

0

e−s/g(Ti )
j2(t− s)− j2(t)

j2(t)
ds, (17)

and by introducing the auxiliary function zi (t) through

zi (t)=g
a

0

e−s/g(Ti )
j2(t− s)− j2(t)

j2(t)
ds, (18)
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one may rewrite the dynamical equations (10) and (11) equivalently as the system

Mẍ1(t)=−kx1(t)− mẋ1(t)+P sin Vt+ nfe(j(t))− s
n

i=1

G0

g(Ti )
zi (t),

mẍ2(t)=−nfe(j(t))+ s
n

i=1

G0

g(Ti )
zi (t), (19)

z� i (t)= −$ 1
g(Ti )

+
2j� (t)
j(t) % zi (t)− g(Ti )

2j� (t)
j(t)

.

Next, defining the referential elastic modulus

ke 0
dfe

dj
(1)q 0, (20)

and linearizing the system (19) about the undistorted state, x1 = x2 =0, j=1, one readily
finds

Mẍ1(t)=−kx1(t)− bẋ1(t)+ nke (x2(t)− x1(t))− s
n

i=1

G0

g(Ti )
zi (t)+P sin Vt,

mẍ2(t)=−nke (x2(t)− x1(t))+ s
n

i=1

G0

g(Ti )
zi (t),

z� i (t)=−
1

g(Ti )
zi (t)−2

g(Ti )
L0

(ẋ2(t)− ẋ1(t)). (21)

4. DYNAMIC CHARACTERISTICS OF THE ABSORBER

For what follows, it is convenient to non-dimensionalize the equations of motion. Thus,
a dimensionless time t is introduced through

t=
t

v0
, (22)

where v0 =zk/M, i.e., the natural frequency of the undamped main oscillator. Also the
following dimensionless parameters are defined:

d=
b
k

, k=
ke

k
, F0 =

G0

kL0
, a=

M
m

, p=
P

kL0
, v=

V

v0
. (23)

The position variables x1(t) and x2(t) are scaled by the undistorted length of the viscoelastic
bar L0 so that

x̃1(t)=
x1(t/v0)

L0
, x̃2(t)=

x2(t/v0)
L0

. (24)
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For each zi (t), a non-dimensional variable is defined through

z	 i =
zi

g(Ti )
. (25)

Next, using equation (23), (24) and (25) in equation (21) gives the dimensionless equations

x̃
..

1(t)=−x̃1(t)+ dx̃
.

1(t)+ nk(x̃2(t)− x̃1(t))−F0 s
n

i=1

z	 i (t)+ p sin vt,

x̃
..

2(t)=−nak(x̃2(t)− x̃1(t))+ aF0 s
n

i=1

z	 i (t),

z̃
.

i (t)=−
1

g(Ti )v0
z	 i (t)−2(x̃

.
(t)2 − x̃

.

1(t)), (26)

where superposed dots now denote differentiation with respect to t. In what follows, g(Ti )
will be denoted by gi with the understanding that the value of gi may be changed through
a change in the temperature Ti in accordance with the discussion in the previous section.

It is straightforward to show, for example by the method of Laplace transforms, that
the solution to equation (26) takes the form

x̃1(t)=X1(v)p sin vt, x̃2(t)=X2(v)p sin vt, z	 i (t)=Zi (v)p sin vt, (27)

where X1(v), X2(v), and Zi (v), are the sinusoidal transfer functions between the forcing
p sin vt and x̃1(t), x̃2(t), and z	 i (t) respectively, which are given by

X1(v)=
F2(v)

(−v2 + div+1)F2(v)−v2F1(v)
, (28)

X2(v)=
aF1(v)

aF1(v)−v2 , (29)

Zi (v)=
1

1+ igiv0v
2igiv0v(X1(v)−X2(v)), (30)

where

F1(v)= nk+2F0s(v), F2(v)= aF1(v)−v2, s(v)= s
n

i=1

ivgiv0

1+ ivgiv0
. (31–33)

4.1.   

The aim in designing a dynamic vibration absorber that provides optimal vibration
suppression for some forcing frequency v is to minimize =X1(v)=. According to equation
(28), this is equivalent to obtaining F2(v)=0. But it follows from equation (32) that one
has F2(v)=0 only if F1(v) is real, and this requires s(v) to be real according to equation
(31). On the other hand, s(v) is real if giv0:a or giv0:0 for each i, i.e., if each term
in the sum defining s(v) in equation (33) is real.

Recall that the value of gi in bar i is dependent on the temperature in bar i. Indeed,
according to equation (14), giv0:a and giv0:0 are obtained for large temperatures, and
small temperatures respectively, in bar i. Due to the nature of the function g(T), these
conditions can only be satisfied approximately. Nevertheless, they serve as guidelines for
tuning the dynamic vibration absorber, and do lead to adequate results. This is shown in
the next section, where the temperature changes necessary are also considered.
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Suppose now that a number n of the viscoelastic bars, (0E nE n), are at ‘‘low’’
temperatures such that for 1E iE n, giv0�1. In addition, let the rest n− n bars be at
‘‘high’’ temperatures such that giv0�1 for n+1E iE n. It is then easy to show that

s(v)= n+O(o), (34)

where

o=max 0max
1E iE n 0 1

giv0v1 , max
n+1E iE n

(giv0v)1. (35)

Then,

F2(v)1−v2 + nak+2nF0a, (36)

which vanishes at

v*=znak+2nF0a. (37)

The dependence of v* on the number of viscoelastic bars at the lower temperature, n,
allows one to control the frequency at which F2(v) approaches zero, and therefore the
operating frequency of the dynamic vibration absorber. Clearly, the suppression band,
which is a the neighborhood of the operating frequency, will also be shifted with a change
of n. Hence, one has a dynamic vibration absorber with adaptable suppression band.

4.2. 

Suppose a dynamic vibration absorber has two viscoelastic elements and that it is to
operate in a frequency interval around v=1, i.e., the resonance frequency of the main
system. Let, for example, F0 =0·005, a=10 and k=0·045. Then, from equation (37), one
sees that v*=1, (i.e., maximum vibration suppression is obtained at v=1), if one

Figure 3. Amplitude versus frequency for the main mass with n=2, F0 =0·005, k=0·045, a=10 and n=0
(– · –), n=1 (––), n=2 (- - - - ).
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Figure 4. Amplitude versus frequency for the absorber mass with n=2, F0 =0·005, k=0·09, a=10 and n=0
(– · –), n=1 (––), n=2 (- - - - ).

chooses n=1. Also, for n=0, one has v*=0·949 and v*=1·049 for n=2. This result
is illustrated in Figure 3, where the magnitude of the transfer function for the main mass,
=X1(v)=, is plotted against the forcing frequency for the cases n=0, n=1 and n=2. Note
that by changing n between 0, 1 and 2, it is possible to keep =X1(v)=Q 1 for v between
approximately 0·92 and 1·1, thereby creating a suppression band approximately twice as
wide as for the case of, for example, n=1. The corresponding magnitude of the transfer

Figure 5. Amplitude versus frequency for the main mass with n=4, F0 =0·004, k=0·021 and a=10 for
n=0, 1, 2, 3, 4; n=2 (––).
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Figure 6. Amplitude versus frequency for the main mass with n=4, F0 =0·005, k=0·02 and a=10 for n=0,
1, 2, 3, 4; n=2 (––).

function for the absorber mass is shown in Figure 4. The larger and smaller values of giv0,
(corresponding to giv0:a and giv0:0 respectively), that are used in these calculations
are 20 and 0·1, respectively.

A slightly larger effective suppression band can be obtained with four viscoelastic bars,
i.e., n=4. Let F0 =0·004, a=10, and k=0·021. Then, from equation (37), it follows that
v*=1 for n=2. Also, for n=0 and n=1, v*Q 1 while v*q 1 for n=3 and n=4.
The corresponding amplitude versus frequency diagrams are shown in Figure 5. The larger
and smaller values of giv0, that are used in this example are 20 and 0·01, respectively.

A third example is shown in Figure 6 with n=4 but with F0 =0·005, a=10, and
k=0·02. Also in this case v*=1 for n=2. For n=0 and n=1, v*Q 1 while v*q 1
for n=3 and n=4. Note that a larger suppression band than in Figure 5 is obtained to
the right of v=1. At the same time, however, a ‘‘hole’’ has been created in the suppression
band to the left of v=1. Also in this example, the larger and smaller values of giv0 used
are 20 and 0·01, respectively.

In conclusion, an increase in F0 leads in general to a larger effective suppression band
because a larger change of v* is obtained with a unit change in n according to equation
(37). On the other hand an increase in n shrinks the suppression band of the absorber for
each n, which is clear from a comparison of equations (3) and (5). Nevertheless a larger
n may be beneficial to the effective suppression band, as shown in Figure 6.

The effective suppression bands of the dynamic vibration absorber obtained in the cases
above are all roughly 10% or higher of the tuning frequency assumed to be at 1. This can
be compared, for example, to the suppression band of the optimized damped linear
dynamic vibration absorber given in reference [12]. There, an optimal suppression band
that is roughly 5% of the tuning frequency, (approximately 0·98), was obtained with the
same mass ratio a=10.

To understand the role of the mass ratio a, and because in many practical applications
a larger value of a may be required, a fourth example is shown in Figure 7. Here, a=40,
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Figure 7. Amplitude versus frequency for the main mass with n=2, F0 =0·005, k=0·012, a=40 and n=0
(– · –), n=1 (––), n=2 (- - - - ).

k=0·012, F0 =0·005, and n=2. The solid line corresponds to n=1 while the
dashed-dotted and dashed lines correspond to n=2 and n=0, respectively. A comparison
of Figure 7 to Figure 3 shows that each amplitude curve in Figure 7 has a narrower
suppression band than the corresponding curve in Figure 3. This is a direct result of the
higher value of a. However, the qualitative behavior of the absorber has not changed; it
is still possible to affect an adaptive suppression band by choosing the number of bars at
the higher temperature, n, appropriately.

To get a rough estimate of the changes in temperature needed to realize the above effects,
suppose that v0 =10 rad/s and that the viscoelastic bars are made of a material with g=2s

Figure 8. Amplitude versus frequency for the main oscillator with n=4, n=2, F0 =0·0035, k=0·0215 and
a=10; d=0 (––), d=0·25 (– · –), d=0·5 (- - - ).
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at 296·8°K, with Ts =360°K. (This corresponds to g0 =1·89×10−6s according to equation
(14)). Note that, for bar i, giv0 =20 at 296·8°K. Now, using g0 =1·89×10−6s in equation
(14), it follows that, in order to decrease giv0 to 0·1, an increase in the temperature Ti of
12°K is all that is necessary. On the other hand, to decrease giv0 to 0·01, it takes a
20°K-increase in Ti .

4.3.     

The effect of viscous damping is to generally decrease the amplitude at all frequencies.
At large damping coefficients (say dq 0·5) this results in a slight increase in the width of
the suppression band. This is shown in Figure 8 where =X1(v)= is plotted against the forcing
frequency for n=4, n=2, F0 =0·0035, k=0·0215, a=10 and for of the dimensionless
damping coefficient d=0, d=0·25 and d=0·5.

5. CONCLUSION

Dynamic vibration absorbers are attractive devices for several reasons. The narrowness
of the suppression band of conventional linear dynamic vibration absorbers, however, and
the instabilities that may be introduced by non-linear dynamic vibration absorbers, are
major concerns in their implementation.

The results in this paper suggest the possibility of using viscoelastic materials to design
a semi-active dynamic vibration absorber with the stability of the linear dynamic vibration
absorber but with a wider effective suppression band. The fact that the suppression band
is easily centered at the resonance frequency is an additional advantage over non-linear
dynamic vibration absorbers and conventional damped linear vibration absorbers.

Though the properties of rubber were used as an example of viscoelastic behavior in
this paper, the practical implementation of the vibration absorber should be considered
in the light of the wide variety of elastomers that can be manufactured with suitable
prescribed qualities, both regarding mechanical and thermodynamic behavior. This greatly
increases the feasibility of the viscoelastic dynamic vibration absorber.

A problem that requires further study is the effect of the non-linearity of the forces from
the viscoelastic bars that may be important for large forcing amplitudes. In addition, only
isothermal motions of the viscoelastic bars has been considered in this paper, i.e., heat
generation inside the bars has been neglected. These points will be the subjects of future
work.
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APPENDIX: NOMENCLATURE

Fi (X, t− s) deformation gradient history in bar i
[Jt ]i (X, t− s) relative strain history in bar i
L0 undistorted lengths of viscoelastic bars
l0 undistorted length of spring
M, m primary and absorber masses
a=M/m mass ratio
k stiffness of main system spring
G(s) relaxation function for a viscoelastic bar
G0 relaxation modulus for a viscoelastic bar
F0 =G0/(kL0) non-dimensional relaxation modulus
T temperature
g relaxation time for a viscoelastic bar
x̃1,2 non-dimensional displacement from equilibria of main mass and absorber
z	 i non-dimensional auxiliary variable representing history of motion
n number of viscoelastic bars
n number of viscoelastic bars at the higher temperature
v non-dimensional forcing frequency
v0 =zk/M natural frequency of main system
k= ke /k stiffness ratio of viscoelastic bar and main system spring
p=P/(kL0) non-dimensional forcing amplitude


